
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 1233 — #1259

i
i

i
i

i
i

Glossary

EBO – see empty-base optimization.

embedded development – writing, documenting, testing, and deploying software for embedded
systems. Binary Literals (145)

embedded system – one that runs either on resource-limited hardware or in restricted environ-
ments, ranging from pacemakers to set-top entertainment devices. long long (93), noexcept

Specifier (1101)

emplacement – an often more efficient alternative to copy construction in which the
arguments to some value constructor of an object, rather than a reference to a constructed
object itself, are used to construct a new object directly in its final
destination — e.g., template<typename T> push_back(const T&); versus
template<typename... Args> void emplace_back(Args&&... args); for the std::vector con-
tainer; see, e.g., hu20. Forwarding References (390)

empty-base optimization (EBO) – a compiler optimization in which a base-class subobject that
introduces no nonstatic data members is assigned the same address as another subobject of
the derived-class object, provided they do not have the same type, to avoid any size overhead
that would otherwise be required. Since C++11, compilers are required to perform this opti-
mization if the derived class is a standard-layout class; otherwise, this optimization is allowed
but not required. Had the same empty base type been used instead to create a data member,
at least one additional byte would have been required within the footprint of the outer class;
hence, the preference for making empty types base classes rather than data members. Note
that C++20 introduces an attribute to address the inefficiency of empty data members.
alignof (185), Generalized PODs ’11 (499), Lambdas (607), Variadic Templates (933), final (1028)

encapsulation – the colocation of (typically private) data along with manipulator and accessory
functions used to act upon and retrieve that data; ideally the representation of the data can
change, perhaps necessitating client code be recompiled, but without forcing any clients to
rework their code; see also insulation. Opaque enums (663)

encoding prefix – one placed before a string or character literal used to indicate a literal having
a character type other than char. C++03 supported L for wchar_t; C++11 added u for
char16_t, U for char32_t, and u8 for char (with UTF-8 encoding). User-Defined Literals (844)

entity – one of the primary logical building blocks of a C++ program: value, object, reference,
function, enumerator, type, class member, bit field, template, template specialization, name-
space, parameter pack, or this. decltype (25), Local Types ’11 (84), deprecated (147)

equality comparable – implies, for a given type, that the homogeneous equality-comparison
operators, operator== and operator!=, are defined and publicly accessible for the purpose
of determining whether two objects of that type have (represent) the same value; see value
semantics. Note that equality comparable is independent of homogeneous relational operators
(<, <=, >, >=).

escalation – a form of refactoring (a.k.a. escalation technique) whereby parts of a pair of compo-
nents that are mutually dependent are moved to a separate, higher-level component, enabling
the removal of a potential cyclic physical dependency; see lakos20, section 3.5.2, “Escalation,”
pp. 604–614. extern template (374)

essential behavior – a superset of postconditions that includes aspects of the computation beyond
the final result, such as runtime complexity, thread safety, exception safety, etc.

1233

lorihughes
Highlight
[set the whole term in gloss font]

lorihughes
Inserted Text
-class

lorihughes
Inserted Text
-class




