
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 184 — #210

i
i

i
i

i
i

alignof Chapter 2 Conditionally Safe Features

The alignof Operator

The keyword alignof serves as a compile-time operator used to query the alignment
requirements of a type on the current platform.

Description

The alignof operator, when applied to a type, evaluates to an integral constant expres-
sion that represents the alignment requirement of its argument type. Similar to sizeof,
the compile-time value of alignof is of type std::size_t; unlike sizeof that can accept
an arbitrary expression, alignof is defined for only type identifiers but often works on
expressions anyway (see Annoyances — alignof is defined only on types on page 193). The
argument type, T, supplied to alignof must be a complete type, a reference type, or
an array type. If T is a complete type, the result is the alignment requirement for T. If T
is a reference type, the result is the alignment requirement for the referenced type. If T is
an array type, the result is the alignment requirement for every element in the array. For
example, on a platform where sizeof(short) == 2 and alignof(short) == 2, the following
assertions pass:
static_assert(alignof(short) == 2, ""); // complete type (sizeof is 2)
static_assert(alignof(short&) == 2, ""); // reference type (sizeof is 2)
static_assert(alignof(short[5]) == 2, ""); // array type (sizeof is 10)
static_assert(alignof(short[]) == 2, ""); // array type (sizeof fails)

According to the C++11 Standard, “An object of array type contains a contiguously allo-
cated nonempty set of N subobjects of type T.”1 Note that, for every type T, sizeof(T) is
always a multiple of alignof(T); otherwise, storing multiple T instances in an array would
be impossible without padding, and the Standard explicitly prohibits padding between array
elements.

alignof Fundamental Types

Like their size, the alignment requirements of a char, signed char, and unsigned char are
guaranteed to be 1 on every conforming platform. For any other fundamental or pointer type
FPT, alignof(FPT) is platform-dependent but is typically approximated well by the
type’s natural alignment — i.e., sizeof(FPT) == alignof(FPT):
static_assert(alignof(char) == 1, ""); // guaranteed to be 1
static_assert(alignof(short) == 2, ""); // platform­dependent
static_assert(alignof(int) == 4, ""); // " "
static_assert(alignof(double) == 8, ""); // " "
static_assert(alignof(void*) >= 4, ""); // " "

1iso11a, section 8.3.4, “Arrays,” paragraph 1, p. 188

184

lorihughes
Cross-Out

lorihughes
Inserted Text
an array thereof, or a reference to one of those types.

lorihughes
Cross-Out

lorihughes
Inserted Text
the values of size and alignment of any other fundamental or pointer type are platform dependent but are typically the same




