“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 184 — #210

alignof Chapter 2 Conditionally Safe Features

The alignof Operator

The keyword alignof serves as a compile-time operator used to query the alignment
requirements of a type on the current platform.

Description

The alignof operator, when applied to a type, evaluates to an integral constant expres-
sion that represents the alignment requirement of its argument type. Similar to sizeof,
the compile-time value of alignof is of type std::size_t; unlike sizeof that can accept
an arbitrary expression, alignof is defined for only type identifiers but often works on
expressions anyway (see Annoyances — alignof is defined only on types on page 193). The
argument type, T, supplied to alignof must be a complete type, & reference $¥pe; or
anarray—type If T is a complete type, the result is the alignment requirement for 7. If T
is a reference type, the result is the alignment requirement for the referenced type. If T is
an array type, the result is the alignment requirement for every element in the array. For
example, on a platform where sizeof(short) == 2 and alignof (short) == 2, the following
assertions pass:

static_assert(alignof(short) =2, "");, // complete type (sizeof is 2)
static_assert(alignof (short&) =2, "");, // reference type (sizeof is 2)
static_assert(alignof(short[5]) == 2, ""); // array type (sizeof is 10)
static_assert(alignof(short[]) == 2, ""); // array type (sizeof fails)

According to the C++11 Standard, “An object of array type contains a contiguously allo-
cated nonempty set of N subobjects of type T.”! Note that, for every type T, sizeof(T) is
always a multiple of alignof(T); otherwise, storing multiple T instances in an array would
be impossible without padding, and the Standard explicitly prohibits padding between array
elements.

alignof Fundamental Types

Like their size, the alignment requirements of a char, signed char, and unsigned char are
guaranteed to be 1 on every conformlng platform. For any other fundamental or pointer type

static_assert(alignof(char) =1, ""); // guaranteed to be 1
static_assert(alignof(short) == 2, ""); // platform-dependent
static_assert(alignof(int) =4, ""), // " "
static_assert(alignof(double) == 8, ""); // " "
static_assert(alignof(void*) >= 4, ""); // " "

lisol1la, section 8.3.4, “Arrays,” paragraph 1, p. 188

184


lorihughes
Cross-Out

lorihughes
Inserted Text
an array thereof, or a reference to one of those types.

lorihughes
Cross-Out

lorihughes
Inserted Text
the values of size and alignment of any other fundamental or pointer type are platform dependent but are typically the same




