“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 185 — #211

Section 2.1 C++11 alignof

alignof User-Defined Types

When applied to user-defined types, alignment is always at least that of the strictest align-
ment of any of its arguments’ base or member objects. Compilers will by default avoid
nonessential padding because any extra padding would be wasteful of memory, e.g., cache:

struct SO { }; // sizeof(SO) is 1; alignof(S0) is 1
struct S1 { char c; }; // sizeof(S1) is 1; alignof(S1) is 1
struct S2 { short s; }; // sizeof(S2) is 2; alignof(S2) is 2
struct S3 { char c; short s; }; // sizeof(S3) is 4; alignof(S3) is 2
struct S4 { short s1; short s2; }; // sizeof(S4) is 4; alignof(S4) is 2
struct S5 { int i; char c; }; // sizeof(S5) is 8; alignof(S5) is 4
struct S6 { char c1; int i; char c2; }; // sizeof(S6) is 12; alignof(S6) is 4
struct S7 { char c; short s; int i; }; // sizeof(S7) is 8; alignof(S7) is 4
struct S8 { double d; }; // sizeof(S8) is 8; alignof(S8) is 8
struct S9 { double d; char c; }; // sizeof(S9) is 16; alignof(S9) is 8
struct SA { long double 1d; }; // sizeof(SA) is 16; alignof(SA) is 16
struct SB { long double 1d; char c; }; // sizeof(SB) is 32; alignof(SB) is 16

Fhe-sizes-of empty types, such as S0 in the example above, arg defined to have the size and
alignment of 1 to ensure that each object and member subobject of type S0 has a unique
address. However, if an empty type is used as a base, the size of the derived type will not
be affected (with some exceptions) due to the empty-base optimization:

struct DO : SO { int i; }; // sizeof(DO) is 4; alignof(DO) is 4

The alignment of the base type always

effeet—is-observablefor-amemptybase-onty—i-it—is ever—a-h-g-ﬂe%see Sectlon 2. 1 “allgnas
on page 168:

struct alignas(8) E { }; // sizeof(E) 1is 8; alignof(E) 1is 8
struct D1 : E { int i; }; // sizeof(D1) is 8; alignof(D1l) is 8

Compilers are permitted to increase alignment — e.g., in the presence of virtual functions,
which typically implies a virtual function table pointer — but have certain restrictions
on padding. For example, they must ensure that each comprised type is itself sufficiently
aligned. Furthermore, sufficient padding must be added so that the alignment of the parent
type divides its size, ensuring that storing multiple instances in an array does not require
any padding between array elements, which is explicitly prohibited by the Standard. In
other words, the following identities hold for all types, T, and positive integers, N:

#include <cstddef> // std::size_ t

template <typename T, std::size_t N>

void f()
{
static_assert(0 == sizeof(T) % alignof(T), "guaranteed");
T a[N];
static_assert(N == sizeof(a) / sizeof(*a), "guaranteed");
}

185


lorihughes
Cross-Out

lorihughes
Inserted Text
Any

lorihughes
Cross-Out

lorihughes
Cross-Out

lorihughes
Inserted Text
is

lorihughes
Cross-Out

lorihughes
Inserted Text
contributes to that of a derived type, but for that effect to be observable when the base class is empty, the base's alignment must have been artificially made stricter than the default, 1

lorihughes
Inserted Text
class




