
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 278 — #304

i
i

i
i

i
i

constexpr Functions Chapter 2 Conditionally Safe Features

constexpr int h1(Lt* p) { return p­>v; } // OK, parameter is a literal type.
constexpr int h2(Nlt* p) { return p­>v; } // OK, " " " " "
constexpr int h3(Lt& r) { return r.v; } // OK, " " " " "
constexpr int h4(Nlt& r) { return r.v; } // OK, " " " " "

However, note that, because constructing an object of nonliteral type at compile time is not
possible, there is no way to invoke h2 or h4 as part of a constant expression since the access
of the member v in all of the above functions requires an already created object to exist.
Pointers and references to nonliteral types can be constexpr provided they are not used to
access their values at compile time:
Nlt arr[17];
constexpr Nlt& arr_0 = arr[0]; // OK, initializing a reference
constexpr Nlt* arr_0_ptr = &arr[0]; // OK, taking an address
constexpr Nlt& arr_0_ptr_deref = *arr_0_ptr; // OK, dereferencing but not using
static_assert(&arr[17] ­ &arr[4] == 13,""); // OK, pointer arithmetic

constexpr int arr_0_v = arr_0.v; // Error, arr[0] is not usable.
constexpr int arr_0_ptr_v = arr_0_ptr­>v; // Error, " " " "

Literal types defined

As discussed understanding which types are literal types is important for knowing what can
and cannot be done during compile-time evaluation. We now elucidate how the language
defines a literal type and, as such, how they are usable in two primary use cases:

• Literal types are eligible to be created and destroyed during the evaluation of a constant
expression.

• Literal types are suitable to be used in the interface of a constexpr function, either
as the return type or as a parameter type.

The criteria for determining whether a given type is a literal type can be divided into six
parts:

1. Every scalar type is a literal type. Scalar types include all fundamental arithmetic
(integral and floating point) types, all enumerated types, and all pointer types.

int int is a literal type.
double double is a literal type.
short* short* is a literal type.

enum E { e_A }; E is a literal type.
T* T* is a literal type (for any T).

Note that a pointer T* is always a literal type, even when it points to a type T that
itself is not a literal type.

278

lorihughes
Cross-Out

lorihughes
Inserted Text
IFNDR

lorihughes
Cross-Out

lorihughes
Inserted Text
IFNDR

lorihughes
Inserted Text
; hence, h2 and h4 are IFNDR.

lorihughes
Inserted Text
,

lorihughes
Inserted Text
well-defined




