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Section 2.1 C++11 constexpr Variables

// file1.cpp:
#include <common.h>

const int *f1() { return &c; }

// file2.cpp:
#include <common.h>

const int *f2() { return &c; }

// main.cpp:
#include <common.h>
#include <cassert> // standard C assert macro

int main()
{

assert( f1() != f2() ); // different addresses in memory per TU
assert( *f1() == *f2() ); // same value
return 0;

}

For static data members, however, things become more difficult. While the declaration
in the class definition needs to have an initializer, that is not itself a definition and will not
result in static storage being allocated at run time for the object, ending in a link-time error
when we try to build an application that tries to reference the static data member7:
struct S {

static constexpr int d_i = 17;
};
void useByReference(const int& i) { /*...*/ }

int main()
{

const int local = S::d_i; // OK, value is only used at compile time.
useByReference(S::d_i); // Link-Time Error, S::d_i not defined
return 0;

}

This link-time error would be averted by adding a definition of S::d_i. Note that the
initializer needs to be omitted, as it has already been specified in the definition of S:
constexpr int S::d_i; // Define constexpr data member.

7The C++17 change to make constexpr variables inline also applies to static data members, removing
the need to provide external definitions when they are used.
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