“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 315 — #341

Section 2.1 C++11 constexpr Variables
// filel.cpp:
#include <common.h>
const int *f1() { return &c; }

// file2.cpp:
#include <common.h>

const int *f2() { return &c; }
// main.cpp:
#include <common.h>

#include <cassert> // standard C assert macro

int main()

{
assert(f1() !'= f2()); // different addresses in memory per TU
assert(*f1() == *f2()); // same value
return 0;

}

For static data members, however, things become more difficult. While the declaration
in the class definition needs to have an initializer, that is not itself a definition and will not
result in static storage being allocated at run time for the object, ending in a link-time error
when we try to build an application that tries to reference the static data member”:

struct S {
static constexpr int d_i = 17;

}i

void useByReference(const int& i) { /*...*/ }

int main()

{
const int local = S::d_i; // OK, value is only used at compile time.
useByReference(S::d_1i); // Link-Time Error, S::d_i not defined
return 0;

}

This link-time error would be averted by adding a definition of S::d_i. Note that the
initializer needs to be omitted, as it has already been specified in the definition of S:

constexpr int S::d_i; // Define constexpr data member.

"FPhe-C++17 change, te—mrake constexpr variables inline alse—applies—to static data membersy removing
the need to provide external definitions when they are used.

315

lorihughes
Highlight
remove code font

lorihughes
Cross-Out

lorihughes
Inserted Text
d

lorihughes
Cross-Out

lorihughes
Inserted Text
static data members to be implicitly

lorihughes
Cross-Out

lorihughes
Inserted Text
variables, a new C++17 feature,

