
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 315 — #341

i
i

i
i

i
i

Section 2.1 C++11 constexpr Variables

// file1.cpp:
#include <common.h>

const int *f1() { return &c; }

// file2.cpp:
#include <common.h>

const int *f2() { return &c; }

// main.cpp:
#include <common.h>
#include <cassert> // standard C assert macro

int main()
{

assert(f1() != f2()); // different addresses in memory per TU
assert(*f1() == *f2()); // same value
return 0;

}

For static data members, however, things become more difficult. While the declaration
in the class definition needs to have an initializer, that is not itself a definition and will not
result in static storage being allocated at run time for the object, ending in a link-time error
when we try to build an application that tries to reference the static data member7:
struct S {

static constexpr int d_i = 17;
};
void useByReference(const int& i) { /*...*/ }

int main()
{

const int local = S::d_i; // OK, value is only used at compile time.
useByReference(S::d_i); // Link-Time Error, S::d_i not defined
return 0;

}

This link-time error would be averted by adding a definition of S::d_i. Note that the
initializer needs to be omitted, as it has already been specified in the definition of S:
constexpr int S::d_i; // Define constexpr data member.

7The C++17 change to make constexpr variables inline also applies to static data members, removing
the need to provide external definitions when they are used.

315

lorihughes
Highlight
remove code font

lorihughes
Cross-Out

lorihughes
Inserted Text
d

lorihughes
Cross-Out

lorihughes
Inserted Text
static data members to be implicitly

lorihughes
Cross-Out

lorihughes
Inserted Text
variables, a new C++17 feature,

