
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 345 — #371

i
i

i
i

i
i

Section 2.1 C++11 enum class

enum class SysPort { e_INPUT = 27, e_OUTPUT = 29, e_ERROR = 32, e_CTRL = 6 };
// enumerated port values used to configure our systems

Now suppose we want to call the function setPort using one of these enumerated values:
void setCurrentPortToCtrl()
{

setPort(SysPort::e_CTRL); // Error, cannot convert SysPort to int
}

Unlike the situation for a classic enum, no implicit conversion occurs from an enum class
to its underlying integral type, so anyone using this enumeration will be forced to somehow
explicitly cast the enumerator to some arithmetic type. There are, however, multiple choices
for performing this cast:
#include <type_traits> // std::underlying_type

void test()
{

setPort(int(SysPort::e_CTRL)); // (1)
setPort((int)SysPort::e_CTRL); // (2)
setPort(static_cast<int>(SysPort::e_CTRL)); // (3)
setPort(static_cast<std::underlying_type<SysPort>::type>(// (4)

SysPort::e_CTRL));
setPort(static_cast<int>(// (5)

static_cast<std::underlying_type<SysPort>::type>(SysPort::e_CTRL)));
}

Any of the above casts would work in this case, but consider a future where a platform
changed setPort to take a long and the control port was changed to a value that cannot
be represented as an int:
int setPort(long portNumber);
enum class SysPort : unsigned { e_INPUT = 27, e_OUTPUT = 29, e_ERROR = 32,

e_CTRL = 0x80000000 };
// enumerated port values used to configure our systems

Only the casting method, line (4) in the example on this page, will pass the correct value for
e_CTRL to this new setPort implementation. The other variations will all pass a negative
number for the port, which would certainly not be the intention of the user writing this
code. A classic, C-style enum would have avoided any manually written cast entirely, and
the proper value would propagate into setPort even as the range of values used for ports
changes:
struct SysPort // explicit scoping for a classic, C­style enum
{

enum Enum { e_INPUT = 27, e_OUTPUT = 29, e_ERROR = 32,
e_CTRL = 0x80000000 };

345

lorihughes
Inserted Text
 long

lorihughes
Inserted Text
 long

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Cross-Out

lorihughes
Inserted Text
i.e., casting to the underlying type alone,

