“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 388 — #414

Forwarding References Chapter 2 Conditionally Safe Features

types that are cv-qualified or ref-qualified Person. Because each parameter is a forwarding
reference, they can all implicitly convert to const Person& to pass to isvalid, creating no
additional temporaries. Finally, std::forward is then used to do the actual moving or
copying as appropriate to data members.

Perfect forwarding for generic factory functions

Consider the prototypical standard-library generic factory function, std: :make_shared<T>.
On the surface, the requirements for this function are fairly simple: Allocate a place for a
T and then construct it with the same arguments that were passed to make_shared. Cor-
rectly passing arguments to the constructor, however, gets reasonably complex to implement
efficiently when T can have a wide variety of ways in which it might be initialized.

For simplicity, we will show how a two-argument my: :make_shared might be defined, know-
ing that a full implementation would employ variadic template arguments for this purpose;
see Section 2.1.“Variadic Templates” on page 873. Furthermore, our simplified make_shared
creates the object on the heap with new and constructs an std: :shared_ptr to manage the
lifetime of that object.

Let’s now consider how we would structure the declaration of this form of make_shared:

namespace my {
template <typename OBJECT_TYPE, typename ARG1l, typename ARG2>
std::shared_ptr<OBJECT_TYPE> make_shared(ARG1&& argl, ARG2&& arg2);

}

Notice that we have two forwarding reference arguments, argl and arg2, with deduced types
ARG1 and ARG2. Now, the body of our function needs to carefully construct our 0BJECT_TYPE
object on the heap and then create our output shared_ptr:

template <typename OBJECT_TYPE, typename ARG1l, typename ARG2>
std::shared_ptr<OBJECT_TYPE> my::make_shared(ARG1&& argl, ARG2&& arg2)
{

OBJECT_TYPE* object_p = new OBJECT_TYPE(ptd::forward<ARG1l>(argl),
r std: :forward<ARG2>(arg2));

try
{
return std::shared_ptr<OBJECT_TYPE>(object_p);
}
catch (...)
{
delete object_p;
throw;
}

}

Notice that this simplified implementation needs to clean up the allocated object if the
constructor for the return value throws; normally ay RAII proctor to manage this ownership
would be a more robust solution to this problem.

388


lorihughes
Inserted Text
n

[an]

lorihughes
Line
[align]




