“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 391 — #417

Section 2.1 C++11 Forwarding References

be used to construct a new element directly in the container’s storage, thereby avoiding
unnecessary copies or even moves:

void g(std::vector<std::string>& v)

{
v.emplace_back("hello world");
// invokes only the std::string::string(const char*) constructor
}
Calling std: :vector<std: :string>::emplac ck with a const char* argument results

in a new std::string object being created inqplace in the next empty spot of the vec-
tor’s storage. Internally, std::allocator_traits::construct is invoked, which typically
employs placement new to construct the object in raw dynamically allocated memory. As
previously mentioned, emplace_back makes use of both variadic templates and forwarding
references; it accepts any number of forwarding references and internally perfectly forwards
them to the constructor of T via std: :forward:

template <typename T>

template <typename... Args>

void std::vector<T>::emplace_back(Args&&... args)

{
/7 ...
(void) new (d_data_p[d_size]) T(std::forward<Args>(args)...); // pseudocode
/7.

}

Emplacement operations remove the need for copy or move operations when inserting ele-
ments into containers, potentially increasing the performance of a program and sometimes,
depending on the container, even allowing even noncopyable or nonmovable objects to be
stored in a container.

As previously mentioned, declaring without defining the copy or mowve constructor of a non-
copyable or nonmovable type to be private is often a way to guarantee that a C++11/14
compiler constructs an object in place. Containers that might need to move elements around
for other operations, such as std: :vector-or ste++degue, will still need movable elements,
while node-based containers that never move the elements themselves after initial construc-
tion, such as std: :1ist or std: :map, can use emplace along with noncopyable or nonmovable
objects.

Decomposing complex expressions

Many modern C++ libraries have adopted a more functional style of programming, chain-
ing the output of one function as the arguments of another function to produce complex
expressions that accomplish a great deal in relatively concise fashion. Consider a function
that reads a file, does some spell-checking for every unique word in the file, and gives us a

391


lorihughes
Pencil
delete hyphen and allow space

lorihughes
Cross-Out


