
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 392 — #418

i
i

i
i

i
i

Forwarding References Chapter 2 Conditionally Safe Features

list of incorrect words and corresponding suggested proper spellings, implemented using a
range-like4 library having common utilities similar to standard UNIX processing utilities:
SpellingSuggestion checkSpelling(const std::string& word);

std::map<std::string, SpellingSuggestion> checkFileSpelling(
const std::string& filename)

{
return makeMap(

filter(transform(
uniq(sort(filterRegex(splitRegex(openFile(filename),"\\s+"),"\\w+"))),

[](const std::string& x)
{

return std::tuple<std::string, SpellingSuggestion>(x,
checkSpelling(x));

}
), [](auto&& x) { return !std::get<1>(x).isCorrect(); }));

}

Each of the functions in this range library — makeMap, transform, uniq, sort, filterRegex,
splitRegex, and openFile — is a set of complex templated overloads and deeply subtle
metaprogramming that becomes hard to unravel for a nonexpert C++ programmer.
To better understand, document, and debug what is happening here, we decide to decom-
pose this expression into many, capturing the implicit temporaries returned by all of these
functions and ideally not changing the actual semantics of what is being done. To do that
properly, we need to capture the type and value category of each subexpression appropri-

4The C++20 ranges library that provides a variety of range utilities and adaptors allows for composition
using the pipe (|) operators instead of nested function calls, resulting in code that might be easier to read:

#include <algorithm> // std::ranges::equal
#include <cassert> // standard C assert macro
#include <ranges> // std::ranges::views::transform, std::ranges::views::filter

void f()
{

int data[] = {1, 2, 3, 4, 5};
int expected[] = {1, 9, 25};

auto isOdd = [](int i) { return i % 2 == 1; };
auto square = [](int i) { return i * i; };

using namespace std::ranges;

// function-call composition
assert(equal(views::transform(views::filter(data, isOdd), square), expected));

// pipe operator composition
assert(equal(data | views::filter(isOdd) | views::transform(square), expected));

}

392

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Cross-Out

lorihughes
Inserted Text
R

lorihughes
Cross-Out

lorihughes
Inserted Text
L

lorihughes
Cross-Out

lorihughes
Inserted Text
R

lorihughes
Cross-Out

lorihughes
Inserted Text
L

lorihughes
Cross-Out

lorihughes
Inserted Text
make_tuple

lorihughes
Inserted Text
const

lorihughes
Cross-Out

