
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 553 — #579

i
i

i
i

i
i

Section 2.1 C++11 initializer_list

List Initialization: std::initializer_list<T>

The C++ Standard Library’s std::initializer_list class template supports lightweight,
compiler-generated arrays of nonmodifiable values that are initialized in source code similarly
to built-in, C-style arrays using the generalized braced initialization syntax.

Description

C++, and C before it, allows built-in arrays to be initialized via brace-enclosed lists of
values:
int data[] = { 0, 1, 1, 2, 3, 5, 8, 13 }; // initializer list of 8 int values

C++11 extends this concept to allow such lists of values to be provided to user-defined
types (UDTs) in a variety of circumstances. The compiler arranges for the values to
be stored in an unnamed C-style array of const elements and provides access to that
array via an object of type std::initializer_list instantiated on the element type. This
object is a lightweight proxy to the elements of the array that provides a familiar API
to both iterate over the elements of the array and query its size. Note that copying the
std::initializer_list object does not copy the array elements. The C++ Standard pro-
vides a reference definition that comprises typedefs, accessors, and an explicitly declared
default constructor, along with implicit definitions of the other five special member func-
tions; see Section 1.1.“Defaulted Functions” on page 33:
namespace std
{

template <typename E>
class initializer_list // illustration of programmer­accessible interface
{

public:
typedef E value_type; // C++ type of each array element
typedef const E& reference; // There is no nonconst reference.
typedef const E& const_reference; // const lvalue reference type
typedef size_t size_type; // type returned by size()

typedef const E* iterator; // There is no nonconst iterator.
typedef const E* const_iterator; // const element­iterator type

constexpr initializer_list() noexcept; // default constructor

constexpr size_t size() const noexcept; // number of elements
constexpr const E* begin() const noexcept; // beginning iterator
constexpr const E* end() const noexcept; // one­past­the­last iterator

};

553

lorihughes
Cross-Out

lorihughes
Inserted Text
like

lorihughes
Cross-Out

lorihughes
Inserted Text
The C++ Standard specifies the public members of initializer_list<T> to include 




