
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 554 — #580

i
i

i
i

i
i

initializer_list Chapter 2 Conditionally Safe Features

// initializer list range access
template <typename E> constexpr const E* begin(initializer_list<E> il) noexcept;
template <typename E> constexpr const E* end(initializer_list<E> il) noexcept;

} // close std namespace

The code example above illustrates the public functionality available for direct use by the
compiler and programmers alike and elides the private machinery used by the compiler to
initialize objects other than an empty initializer list. Objects of this template, instantiated
for element type E, act as lightweight proxies for compiler-supplied arrays. When these proxy
objects are copied or assigned, they do not copy the elements of their underlying array. Note
that std::initializer_list satisfies the Standard Library requirements of a range with
random access iterators.
The public interface of the std::initializer_list class template, in the code example
above, also employs two other C++11 language features: constexpr and noexcept. The
constexpr keyword allows the compiler to consider using a function so decorated as part of
a constant expression; see Section 2.1.“constexpr Functions” on page 257. The noexcept
specifier indicates that the function is not allowed to throw an exception; see Section 3.1.
“noexcept Specifier” on page 1085.
As an introductory example, consider a function, printNumbers, that prints the elements
of a given sequence of integers that is represented by its std::initializer_list<int>
parameter, il:
#include <initializer_list> // std::initializer_list
#include <iostream> // std::cout

void printNumbers(std::initializer_list<int> il) // prints given list of ints
{

std::cout << "{";
for (const int* ip = il.begin(); ip != il.end(); ++ip) // classic for loop
{

std::cout << ' ' << *ip; // output each element in given list of ints
}
std::cout << " } [size = " << il.size() << ']';

}

Using member functions begin and end, the printNumbers function in the code snippet
above employs, for exposition purposes, the classic for loop to iterate through the supplied
initializer list, printing each of the elements in turn to stdout, eventually followed by the
size of the list. Note that il is passed by value rather than by const reference; this style of
passing arguments is used purely as a matter of convention, because std::initializer_list
is designed to be a small trivial type that many C++ implementations can optimize by
efficiently passing such function arguments using CPU registers.
We can now write a test function to invoke this printNumbers function on a braced-
initializer list; see Section 2.1.“Braced Init” on page 215:

554

lorihughes
Cross-Out

lorihughes
Inserted Text
namespace std

[transposing current order]

lorihughes
Cross-Out

lorihughes
Inserted Text
simple




