
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 578 — #604

i
i

i
i

i
i

Lambdas Chapter 2 Conditionally Safe Features

Evaluating a lambda expression creates a temporary closure object of an unnamed type
called the closure type. Each part of a lambda expression is described in detail in the
subsections below.

Closures

A lambda expression looks a lot like an unnamed function definition, and it is often conve-
nient to think of it that way, but a lambda expression is actually more complex than that.
First, a lambda expression, as the name implies, is an expression rather than a definition.
The result of evaluating a lambda expression is a special function object called a closure1; it
is not until the closure is invoked — which can happen immediately but often occurs later
(e.g., as a callback) — that the body of the lambda expression is executed.
Evaluating a lambda expression creates a temporary closure object of an unnamed type
called the closure type. The closure type encapsulates captured variables (see Section 2.2.
“Lambda Captures” on page 986) and has a call operator that executes the body of the
lambda expression. Each lambda expression has a unique closure type, even if it is identical
to another lambda expression in the program. If the lambda expression appears within a
template, the closure type for each instantiation of that template is unique. Note, however,
that, although the closure object is an unnamed temporary object, it can be saved in a
named variable whose type can be queried. Closure types are copy constructible and move
constructible, but they have no other constructors and have deleted assignment operators.2
Interestingly, it is possible to inherit from a closure type, provided the derived class con-
structs its closure type base class using only the copy or move constructors. This ability to
derive from a closure type allows taking advantage of the empty-base optimization (EBO):
#include <utility> // std::move

template <typename Func>
int callFunc(const Func& f) { return f(); }

void f1()
{

int i = 5;
auto c1 = [i]{ return 2 * i; }; // OK, deduced type for c1
using C1t = decltype(c1); // OK, named alias for unnamed type
C1t c1b = c1; // OK, copy of c1
auto c2 = [i]{ return 2 * i; }; // OK, identical lambda expression
using C2t = decltype(c2);
C1t c2b = c2; // Error, different types, C1t & C2t
using C3t = decltype([]{/*...*/}); // Error, lambda expr within decltype

1The terms lambda and closure are borrowed from Lambda Calculus, a computational system developed
by Alonzo Church in the 1930s. Many computer languages have features inspired by Lambda Calculus,
although most (including C++) take some liberties with the terminology. See rojas15 and barendregt84.

2C++17 provides default constructors for captureless lambdas, which are assignable in C++20.

578

lorihughes
Inserted Text
Init-

lorihughes
Inserted Text
-class

lorihughes
Inserted Text
 and assignment operators

lorihughes
Cross-Out

lorihughes
Cross-Out

lorihughes
Inserted Text
20




