“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 579 — #605

Section 2.1 C++11 Lambdas

auto c4 = []{ return 2; }; // OK, captureless lambda expression
using C4t = decltype(c4);

class C4Derived : public C4t // 0K, inherit from closure type.
{

int d_auxVvalue;

public:
C4Derived(C4t c4, int aux) : C4t(std::move(c4)), d_auxValue(aux) { }
int aux() const { return d_auxvalue; }

Y
static_assert(sizeof(C4Derived) == sizeof(int), ""); // OK, EBO applied
int ret = callFunc([i]{ return 2 * i; }); // OK, deduced arg type, Func

clb = c1; // Error, assignment of closures is not allowed.

}

The types of c1 and c2, above, are different, even though they are token-for-token identical.
As there is no way to explicitly name a closure type, we use auto in the case of c1 and c2
in f1 (see Section 2.1.“auto Variables” on page 195) or template-argument deduction in the
case of f in callFunc to create variables directly from the lambda expression, and we use
decltype (see Section 1.1.“decltype” on page 25) to create aliases to the types of existing
closure variables (C1t and c2t). Note that using decltype directly on a lambda expression
is ill formed, as shown with C3t;beeausg there would be no way to construct an object of
the resulting unique type.? The derived class, C4perived, uses the type alias C&t to refer to
its base class. Note that its constructor forwards its first argument to the base-class move
constructor.

There is no way to specify a closure type prior to creating an actual closure object of that
type. Consequently, there is no way to declare callFunc with a parameter of the actual
closure type that will be passed; hence, it is declared as a template parameter. As a special
case, however, if the lambda capture is empty (i.e., the lambda expression begins with [];
see Section 2.2.“Lambda Captures” on page 986), then the closure is implicitly convertible
to an ordinary function pointer having the same signature as its call operator:

char callFuncPtr(char (*f)(const char*)) { return f("x"); } // not a template

char ¢ = callFuncPtr([](const char* s) { return s ? s[0] : '\@'; });
// OK, closure argument is converted to function-pointer parameter.

char d = callFuncPtr([c](const char* s) { /*...*/ });
// Error, lambda capture is not empty; no conversion to function pointer.

3Since C++20, lambda expression, are allowed to appear in unevaluated contexts, including operands of
decltype and sizeof.

579


lorihughes
Cross-Out

lorihughes
Inserted Text
4

lorihughes
Cross-Out

lorihughes
Inserted Text
4

lorihughes
Inserted Text
s

[expressions]

lorihughes
Inserted Text
Init-

lorihughes
Cross-Out

lorihughes
Inserted Text
;

lorihughes
Inserted Text
the 




