“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 581 — #607

Section 2.1 C++11 Lambdas

Finally, the purpose of a closure is to be invoked. It can be invoked immediately by supplying
arguments for each of its parameters:

#include <iostream> // std::cout
void f3()
{

[1(const char* s) { std::cout << s; }("hello world\n");
// equivalent to std::cout << "hello world\n";

}

The closure object, in this example, is invoked immediately and then destroyed, making the
above just a complicated way to say std::cout << "hello world\n";. More commonly,
the lambda expression is used as a local function for convenience and to avoid clutter:

#include <cmath> // std::sqrt

double hypotenuse(double a, double b)
{

auto sqr = [](double x) { return x * x; };
return std::sqrt(sqr(a) + sqr(b));
}

Note that the closure’s call operator cannot be overloadedy

aute sgr——J{int x)—{ return x—=*—x—3}; Ok—stor e —
aute sgr—={]{deuble x)—{ return x—*—x;—3 e

The most common use of a lambda expression, however, is as a callback to a function
template, e.g., as a functor argument to an algorithm from the Standard Library:

#include <algorithm> // std::partition

template <typename FwdIt>
FwdIt oddEvenPartition(FwdIt first, FwdIt last)

{
using value_type = decltype(*first);
return std::partition(first, last, [](value_type v) { return v % 2 != 0; });

}

The oddEvenPartition function template moves odd values to the start of the sequence and
even values to the back. The closure object is invoked repeatedly within the std: :partition
algorithm.

Lambda capture and lambda introducer

The purpose of the lambda capture is to make certain local variables from the environ-
ment available to be used (or, more precisely, ODR-used, which means that they are
used, in a potentially evaluated context) within the lambda body. Each local variable

581


lorihughes
Inserted Text
. There is no syntax to express multiple call operators on the same closure type. 

lorihughes
Cross-Out

lorihughes
Cross-Out

lorihughes
Inserted Text
referenced




